
Journal of Modern Physics, 2013, 4, 236-239 
http://dx.doi.org/10.4236/jmp.2013.42033 Published Online February 2013 (http://www.scirp.org/journal/jmp) 

The Propagation of Circularly Polarized  
Waves in Quantum Plasma 

Bahaa F. Mohamed1, Rehab Albrulosy2 
1Plasma Physics Department, N.R.C., Atomic Energy Authority, Cairo, Egypt 

2Physics Department, Faculty of Science, Banha University, Banha, Egypt 
Email: mohamedbahf@yahoo.co.uk 

 
Received September 2, 2012; revised November 1, 2012; accepted November 28, 2012 

ABSTRACT 

The quantum effects on the propagation circularly polarized waves have been investigated in electron magnetized 
quantum plasmas. We obtain the dispersion equations of the propagation of circularly polarized laser beam through cold 
plasma. The results show that the laser can be propagated due to the quantum effects which enhance the propagation 
phase velocity. For this purpose, the quantum hydrodynamic (QHD) equations with magnetic field and Maxwell’s 
equations system is used to derive these dispersion relations. The perturbed electron density and current due to the in- 
teraction of laser beam with quantum plasma have been investigated. It is shown that the external magnetic field which 
is parallel to the propagation waves has strong effect on the dispersion relation for the laser propagation in quantum 
model than the classical regime. 
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1. Introduction 

The classical plasmas, in general, are characterized by 
high temperature and low density regimes where quan- 
tum effects are negligible. However, there are examples 
in nature where both plasma and quantum effect can co- 
exist. In such situations, quantum effects are expected to 
play a significant role on the dynamics of plasma parti- 
cles. 

The quantum plasma has received much attention in 
recent years due to its important applications in ultras- 
mall electronics devices [1], quantum dots and quantum 
wire [2], in dense astrophysical plasma system [3,4] as 
well as in laser-produced plasma [5] and nonlinear optics 
[6]. 

Two well-known models are used to study quantum 
plasmas systems. The first one is the Wigner model 
which describes the statistical behavior of plasmas based 
on the Wigner-Poisson system. The other is Hartree mo- 
del which describes the hydrodynamic behavior of plas- 
mas based on the Schrodinger-Poisson system [7,8]. The 
quantum hydrodynamic (QHD) model describes the trans- 
port of charge, momentum and energy in charged particle 
system interacting though a self-consistent electrostatic 
potential. 

The quantum plasma effects become important in 
dense plasmas, when the de Broglie wavelength of the 
charge carriers becomes comparable to the spatial scale 

of plasma system. So, the new dispersion relationship 
with quantum effects corrections for some types of linear 
waves in a uniform cold quantum plasma with nonzero 
external magnetic field are calculated by Ren et al. [9]. 
Also, the dispersion relation for the propagation of li- 
nearly polarized laser beam through cold quantum plas- 
ma has been obtained by Kumar et al. [10] using pertur- 
bation techniques.  

In addition, the surface plasma waves propagating 
along the plasma-vacuum interface has attracted much 
attention since the frequency spectra have wide applica- 
tions in many areas such as laser physics, Plasma spec-
troscopy and plasma technology [11]. Lazer et al. [12] 
has presented the dispersion relation for surface plas- 
mons that can exist on a dense quantum plasma half- 
space. Also, the dispersion relations of one-, two-stream 
and beam-plasma instabilities in uniform quantum mag- 
netized plasmas are investigated through the new dielec- 
tric tensor [13].  

In the present paper, the quantum effects on the propa- 
gation circularly polarized waves have been investigated 
in electron quantum plasmas. We study the dispersion 
equations of its propagation through cold plasma under 
an external magnetic field based on the (QHD) model. 

2. Governing Equations 

Considering a circularly polarized laser beam represented 
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by the electric field  
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and the magnetic field  

 0 sin cosz x z yk z t   B k z t   B e e  

propagates through the quantum electron plasma elec- 
trons.  

We assume that the plasma is immersed in an ambient 
static magnetic field 0 0 zBB e . From QHD model, the 
dynamics of the electrons are governed by the following 
continuity equation and the momentum equation: 
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Here n, u and m are the number density, the velocity 
and the mass of electron respectively and  is the 
Plank’s constant divided by . The electrons obey the 
following pressure law which represents the equation of 
state in one-dimensional zero-temperature Fermi gas: 
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V  is the Fermi thermal speed,   

is the particle Fermi temperature, KB is the Boltzmann’s 
constant and o  is the equilibrium particle number den- 
sity. We have included both the quantum statistical ef- 
fects through Fermi temperature and the quantum dif- 
fraction in the -dependent. If we set  equal to zero 
and Fe  equal the temperature of electrons, we obtain 
the classical hydrodynamic equation. 

Using the perturbation technique, we assume any phy- 
sical quantity   representing has the following form 

10    where 0  is the unperturbed value and 

1 0   is a small perturbation , 
we get: 
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The last term in the Equation (4), which representing 
the Bohm potential, has been perturbatively expanded 
using [10]. The basic set of linearized equation in homo- 
geneous quantum magnetized cold plasma is: 
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Taking into account Equation (6) and the expression of 
k, the following equation is derived: 
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 ne J u  components of the plasma electrons in the 
plane of circularized polarized laser beam can be written 
as: 
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and 0c eB m   is the electron Larmor frequency. But 
at the same time the current density and the dielectric 
tensor ̂  are given by: 
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I  is the unit tensor and 
1 22 2n e m   

2 2 2
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where 0 0   is 
the electron plasma frequency. Therefore, the dispersion 
relation can be written as  

               (13) 
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3. Discussions 

In this section, we focus our attention to investigate the 
dispersion relationship (13) analytically and numerically 
in some cases for 0  (i.e., 0u   

 0c 
). First, in the 

absence of the external magnetic field , it is 
reduced to the following equation: 
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which gives two dispersion relations describe the propa- 
gation of laser beam in unmagnetized plasma. In this 
case  

               (15) 
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It is noticed that Equation (15) is the well known lin-
ear dispersion relation of the laser beam propagating in 
classical plasma  and Equation (16) agrees with 
Equation (8), in reference [10], which describes the pro- 
pagation of the linearly polarized laser beam in unmag- 
netized quantum plasma.  

Second, in the case of magnetized plasma and ignoring 
the quantum effects caused by the Bohm potential and 
the quantum statistical effects through Fermi temperature 

, Equation (13) becomes:  
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It is the dispersion relation of beam laser propagating 
in classical magnetized plasma which is as the earlier 
result [14]. 

Introducing the normalized quantities pW   , 

Fex pK k V  , Fez xk k c V   , c c p    and 
the plasmonic coupling  22 FepH mV
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 which de- 
scribes the ratio of plasmonic energy density to the elec- 
tron Fermi energy density, we rewrite the dispersion re- 
lation (16) as:  
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For typical parameters of the gold metallic plasma at 
room temperature [12], n0 = 5.9 × 1022 cm−3, ωp = 1.37 × 

1016 s−3, VFe = 1.4 × 108 cm/s, Equation (18) is plotted for 
different H in Figure 1. It is clear that quantum effects 
cannot be ignored but become significant only when the 
wave number is large enough where the dispersion curves 
for different values of the parameter H = 0, 3, 5 are ex- 
actly superposed on each other’s at low wave numbers 
for unmagnetized plasm as shown in Figure 1. At zero 
wave number  0kx  , the wave frequency equals the 
plasma frequency. 

Again, for numerical analysis and using the normal- 
ized quantities and the above typical parameters, Equa- 
tion (13) has been numerically solved to investigate the 
quantum and magnetic field effects on dispersion relation. 
Figure 2 displays the normalized frequency  pW    
against the normalized wave number  Fex pK k V   
for different plasmonic parameter H = 0, 1, 3, 5. It is 
found that quantum effects in magnetized plasma also 
become significant only when the wave number is large 
enough for 0.5c  . The dispersion curves for different 
values of the parameter H are exactly superposed on each 
other’s at low wave numbers with dispersion curve 
 0H   and has changed faster with larger quantum 
effects for high wave number.  

Besides, Figure 3 displays the effect of the magnetic 
field on dispersion relation of laser propagation inside  
 

 

Figure 1. Normalized dispersion relation for the propaga- 
tion of circularly polarized laser in unmagnetized quantum 
plasma with H = 0, 3, 5. 
 

 

Figure 2. Normalized dispersion relation for the propaga- 
tion of circularly polarized laser in magnetized quantum 
plasma with H = 0, 1, 3, 5 for ωc = 0.2. 
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